Showing posts with label navigational instruments. Show all posts
Showing posts with label navigational instruments. Show all posts

Wednesday, August 24, 2011

LORAN-C

LORAN(Long Range Navigation) is a terrestrial radio navigation system using low frequency radio transmitters in numerous deployment to determine the location and pace of the receiver.The most recent version of LORAN in use is LORAN-C, which operates in the reduced frequency portion of the electromagnetic spectrum from 90 to 110 Kilohertz. Numerous nations have utilized the program, such as the us, Japan, and a number of European nations. Russia uses a nearly identical system within the same frequency range, called CHAYKA.
 
LORAN use continues to be in steep decline, using the satellite primarily based Global Positioning Program (GPS) being the primary substitute. However, there have been attempts to enhance and re-popularize LORAN, primarily to serve as being a backup and land-based alternative to GPS along with other International navigation satellite system (GNSS) techniques.The present LORAN program has been phased out in the Usa and Canada. The united states Coast Guard (USCG) and Canadian Coast Guard (CCG) ceased transmitting LORAN-C (and joint CHAYKA) indicators in 2010.
The navigational technique offered by LORAN is dependant on the key with the time distinction in between the receipt of indications from the set of radio transmitters.[6] A offered continuous time distinction in between the indications in the two stations might be symbolized with a hyperbolic type of place (LOP).When the positions with the two synchronized stations are recognized, then your place with the receiver might be established as becoming somewhere on the specific hyperbolic curve exactly where time distinction in between the acquired indications is continuous. In perfect conditions, this really is proportionally equal towards the distinction with the distances in the receiver to every with the two stations.
A LORAN network with only two stations can't offer significantsignificant navigation info because the 2-dimensional place with the receiver can't be fixed due to towards the stage ambiguities within the program and absence of the outdoorsoutdoors stage reference.A second software with the identical principle should be utilized, according to time distinction of the various set of stations. In apply, 1 with the stations within the second pair also might be-and frequently is-in the very first pair. In easy phrases, this suggests indications should be acquired from a minimum of 3 transmitters to target the receiver's place. By identifyingdetermining the intersection with the two hyperbolic curves recognizedrecognized with this technique, a geographic repair might be established.

Tuesday, August 23, 2011

(RADAR) Radio Detection and Ranging

           Radar radio detection and ranging is definitely an object-detection system which utilizes electromagnetic waves-specifically radio waves-to figure out the range, altitude, direction, or pace of both moving and fixed objects this kind of as aircraft, ships, spacecraft, guided missiles, motor autos, weather formations, and terrain. The radar dish, or antenna, transmits pulses of radio waves or microwaves which bounce off any object within their path. The object returns a small part of the wave's energy to a dish or antenna which is generally situated at the same site because the transmitter.The military programs of radar were created in secret in nations across the world during World War II. 
            
             The term RADAR was coined in 1940 by the U.S. Navy as an acronym for radio detection and ranging.The phrase radar has been use in English and other languages as the typical noun radar, losing all capitalization. In the Uk, the technologies was initially known as RDF (range and direction Finder), utilizing the same initials utilized for radio direction finding to hide its ranging capability.The contemporary uses of radar are extremely diverse, such as air visitors manage, radar astronomy, air-defense systems, antimissile techniques; nautical radars to locate landmarks and other ships; aircraft anticollision systems; ocean-surveillance systems, outer-space surveillance and rendezvous systems; meteorological precipitation monitoring; altimetry and flight-control systems; guided-missile target-locating techniques; and ground-penetrating radar for geological observations. High tech radar techniques are associated with digital signal processing and are capable of extracting objects from extremely higher noise levels.Other systems comparable to radar have already been utilized in other parts of the electromagnetic spectrum. One example is "lidar", which utilizes visible mild from lasers rather than radio waves.A radar program has a transmitter that emits radio waves known as radar indicators in predetermined instructions. When these arrive into contact with an object they are usually reflected and/or scattered in lots of instructions

              Radar signals are reflected particularly well by supplies of substantial electrical conductivity-especially by most metals, by seawater, by wet land, and by wetlands. Some of these make the use of radar altimeters feasible. The radar signals which are mirrored back again in the direction of the transmitter are the desirable ones that make radar function. When the object is shifting either nearer or farther away, there is a slight alter within the frequency with the radio waves, because of the Doppler impact.Radar receivers are often, but not usually, within the exact same location as the transmitter. Although the mirrored radar indicators captured through the getting antenna are often very weak, these signals can be strengthened by the electronic amplifiers that all radar sets include. Much more advanced methods of signal processing are also nearly usually used to be able to recuperate useful radar indicators.The weak absorption of radio waves by the medium through which it passes is what allows radar sets to detect objects at relatively-long ranges-ranges at which other electromagnetic wavelengths, such as visible mild, infrared mild, and ultraviolet mild, are too strongly attenuated. Such things as fog, clouds, rain, falling snow, and sleet that block visible mild are usually transparent to radio waves. Certain, particular radio frequencies which are absorbed or scattered by water vapor, raindrops, or atmospheric gases (especially oxygen) are prevented in creating radars other than when detection of those is meant.Lastly, radar relies on its own transmissions, rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the objects themselves, this kind of as infrared wavelengths (heat). This process of directing artificial radio waves in the direction of objects is called illumination, no matter the fact that radio waves are completely invisible towards the human eye or cameras.

Friday, July 29, 2011

INSTRUMENT LANDING SYSTEM (ILS)

An  (ILS)  Instrument Landing System is a ground-based equipment that radiates guidance information to be received by an aircraft during final approach for correct and safe landing. It is composed of ground based equipments such as transmitter, combining/dividing network, antenna and monitors systems.
ILS have three subsytem: Localizer, Glidepath/Glideslope and Marker Beacons.
 
A.The vertical plane containing the runway centerline is defined by VHF transmitter called Localizer.
B.The horizontal plane of 2 to 4ยบ of vertical angle above the horizontal plane is defined by a UHF transmitter called the Glide slope.
C.Distance information installed on a fixed distance reference points are provided by markers.


MARKER BEACONS
Beacons are AM transmitters operating at 75 MHz located at specific points along the landing path used to designate distance away from the threshold.
Operating  Radio Frequency
  75 MHz  ± 0.01%
Modulating Frequency
  Inner  Marker (when installed) : 3000Hz
  Middle Marker: 1300 Hz
  Outer Marker: 400 Hz
Coverage
  Inner Marker (when installed) 150 m ± 50 m
  Middle Marker : 300 m ± 100 m
  Outer Marker : 600 m ± 200 m
Identification Signal
  Inner Marker (when installed): 6 dots per second continuously
  Middle Marker: Series of dots and dashes
  a. dashes keyed at a rate of 2 dashes/sec
  b. dots keyed at a rate of 6 dots/sec
  Outer Marker: 2 dashes/sec continuously
Monitoring
  Automatic Monitoring System that transmit a warning signals to  a control point    during
  a.  Failure of modulation or keying
  b. Reduction of Power output to less than 50%